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Abstract
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1. Introduction

In its technical design, futures contract prices converge to spot prices at expiration dates. As a

natural outcome, basis movements are supposed to have a negative autocorrelation and given a

non-stochastic interest rate term structure and dividend payout, they are completely deterministic

according to the cost of carry model (Miller et al. (1994)). However, voluminous literature docu-

ments deviations of index futures market prices from theoretically generated cost-of-carry prices

(Cornell (1985), Cornell and French (1983), Dwyer et al. (1996), Figlewski (1984), Kawaller et al.

(1987), MacKinlay and Ramaswamy (1988), Tu et al. (2016) among many others.) Settled wisdom

says that any price deviation from no-arbitrage boundaries will attract arbitrageurs for price correc-

tion. However, the mispricing may remain unexploited due to lack of arbitrage capital (Rubinstein

(1987), Shleifer and Vishny (1997)), increased uncertainty for dividends with time to maturity

(MacKinlay and Ramaswamy (1988), Yadav and Pope (1994)), short-selling restrictions (Brenner

et al. (1989)), varying liquidity conditions (Hirshleifer (2001), Kamara and Miller (1995)), limita-

tion for efficacious judgements due to staleness in spot index (Brenner et al. (1989), Richie et al.

(2008)), and expected volatility (Tu et al. (2016)).

To insure their existing investment positions, market participants use various financial instru-

ments one of which is the index futures contracts. However, knitting the analyses based only on

the forces in index futures markets will be prosaic as today’s complex market structure entails ex-

tricating different dynamics to grasp the picture comprehensively. As a matter of fact, Baltussen

et al. (2021) recently documented that market momentum in index futures is also linked to hedging

demands emanating from net gamma exposures of different clientele like option market makers,

portfolio insuring institutional investors and leveraged ETFs. Our study further examines if these

markets forces are linked the prevailing market ambiguity behind the scene by specifically focusing

on the mispricing in index futures.

A century ago, Knight (1921) addressed the issue of “unmeasurable uncertainty” in which

no probability measures are assigned for the subsets of a potential outcome space. In the same

spirit, Keynes (1936) pointed out that majority of our decisions are steered by animal spirits rather

than pure mathematical expectations. Savage (1954) claims that agents circumvent uncertainty by

leaning on their subjective priors during utility maximization. However, confronted with a choice

between risk and uncertainty, decision makers eschew from vague outcomes and prefer risk to
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uncertainty (Ellsberg (1961), Epstein and Wang (1994), Fellner (1961) among many others).1

One branch of the literature has extensively reported that market ambiguity shapes investor be-

haviours. It is without doubt that obscure future states is a source of unrest for market participants.

Mukerji and Tallon (2001), Easley and O’Hara (2009) and Jiang and Zhu (2017) report that am-

biguity aversion may hinder certain investors from trading certain financial assets due to blurred

expected return levels.2 Leading to non-participation in these assets, ambiguity aversion adversely

affects risk sharing in the market. Similarly, Trojani and Vanini (2004) show that aversion to ambi-

guity reduces equity market participation3. Consistently, models that incorporate ambiguity imply

less frequent portfolio reshuffling compared to classical mean-variance optimization and Bayesian

approach which are silent to ambiguity (Garlappi et al. (2007))4. Agents also demand higher risk

premium when the prospects are suffused with vagueness (Camerer (1995), Hirshleifer (2001),

Trojani and Vanini (2004))5.

Persistence of index futures mispricing is also connected to trading practices by the arbi-

trageurs. Literature (Dwyer et al. (1996), Klemkosky and Lee (1991), Shleifer and Vishny (1997))

and practitioner evidence show that arbitrage activities are mostly undertaken by Exchange mem-

bers and institutional / professional investors due mainly to advantageous cost tariffs, capital re-

quirements, well equipped teams, and continuous monitoring. To put it differently, retail investor

involvement in arbitrage activities is on negligible levels. That said, reaping potential arbitrage

profits in financial markets is not a bird in the hand. As opposed to riskless profit perception,

executing arbitrage activity is mostly risky and not completely mechanical. Concerned with the

return performance of entrusted capital, arbitrageurs may be forced to liquidate their positions dur-

1Heath and Tversky (1991) expand the discussions on ambiguity aversion and cast light on judgmental proba-
bilities to indicate that people may opt for ambiguous outcomes when they have a feeling of competence or prior
knowledge on the subject. Digging for further clarification, Fox and Tversky (1995) bring up “comparative igno-
rance hypothesis” to assert that ambiguity aversion is extant when agents make joint assessment of cloudy and clear
prospects and this aversion may wane if these prospects are evaluated independently. See also Trautmann et al. (2011)
for preference reversals and the way ambiguity aversion is measured.

2Easley and O’Hara (2009) offer making regulatory amendments (especially for the worst-case /extreme events)
to solve this participation problem. See also Dimmock et al. (2016) for an empirical study on ambiguity and market
participation.

3In their empirical study, Antoniou et al. (2015) similarly document negative relation between ambiguity and
equity fund flows.

4Similar to Garlappi et al. (2007), Bossaerts et al. (2010) report relatively more balanced portfolio formation by
ambiguity averse agents. In the same vein, Illeditsch (2011) reports portfolio inertia for ambiguity averse investors.

5Leippold et al. (2008) incorporate learning and ambiguity to explain high equity premia. Easley and O’Hara
(2009) similarly report higher level of returns for stocks that are not much preferred by ambiguity averse investors.
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ing persistent noise trader shocks and shun price correction especially when asset mispricing is

acute (Hirshleifer (2001), Shleifer and Vishny (1997))6. Chasing the liquidity during extreme mar-

ket conditions is also a shared trading behavior among high frequency traders which is triggered

mainly by risk management concerns for over-accumulated positions (Brogaard et al. (2018)). Our

motivation to figure out the relation between ambiguity and mispricing in index futures is also

grounded on arbitrageurs’ sensitivity to uncertainty. Arbitrageurs are clustered in bond markets

due to their relative confidence in fundamental valuation in contrast to stock markets for which it is

harder to assess fundamental values because of stochastic cash flows (dividend amounts) and their

timings (Shleifer and Vishny (1997)). As the authors point out further, stock market uncertainty

dissipates slowly and mispricing in stock markets can remain intact for a long-time (especially

during volatile periods).7 This makes the market less attractive to arbitrageurs who are generally

concerned with short-term return performances. Popularity of equities decrease in portfolio for-

mation practices as well; investors reduce the weight of equities and slant their preference towards

riskless assets in an ambiguous environment.8

At first glance, the closest study to ours seems to be Tu et al. (2016) in which the authors

link nonvanishing index futures mispricing to expected volatility levels represented by 30-day VIX

numbers. To the extent implied volatility proxies for risk, arbitrageurs’ ramping risk aversion

and associated higher compensation expectancy dissuade them from price correction. However,

their study can be associated with the literature that elaborates on market participation costs and

risk aversion simply put.9 Also strikingly, expected volatility and expected ambiguity can already

shape investor decisions in different ways. For instance, higher levels of the expected volatility

is associated with later stock option exercises whereas higher levels of the expected ambiguity

backdates these option exercises (Izhakian and Yermack (2017)). Hence, pillars of the present

study starkly differ from the aforementioned paper.

6See also Kyle and Xiong (2001) to behold how wealth effect may force rational convergence traders to abstain
from exploiting deviations from fundamentals during severe market conditions.

7Epstein and Schneider (2008) and Illeditsch (2011) present how ambiguous signals worsen excess price volatili-
ties compared to a Bayesian framework. Refer also to Caskey (2009) to see how persistent mispricing may be linked
to information packages and ambiguity averse investors.

8See Maenhout (2004) for a detailed discussion.
9See Paiella (2007) for further discussion on participation costs.
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2. Data, Model and Methodology

2.1. Data

Our data spans from October 1997 to December 2021 with daily frequency.10 This period covers

more than 24 years within which the markets had experienced numerous different cases; dot.com

bubble and burst, 11/9 terrorist attacks, global financial crises, plethora of funds via quantita-

tive easing in the follow-up period, European debt crises, negative interest rates, Brexit, Covid-

pandemic and many other ups and downs in global markets. Markets also had gone through enor-

mous technological transformations where algorithms had had considerable impact in trading prac-

tices especially in developed markets. Versatility in market conditions fortifies the implications and

generalizability of our findings.

We extract S&P500 daily spot index levels along with accompanying composite dividend yields

from Refinitiv Database. The risk free rate in cost-of-carry model comes from FED three-month

treasury bill yields.11 E-mini futures are the front-month contracts where the trading volume is

largest. Daily contract settlement prices and VIX numbers are similarly taken from Refinitiv.

Similar to our model construction rationale, Kostopoulos et al. (2022) uses VSTOXX (equivalent of

VIX for Europe) for volatility measure and volatility of VSTOXX (V-VSTOXX) as the ambiguity

measure in their analysis of investor behaviors amid market ambiguity and they strikingly report

that ambiguity measure (not the volatility) is statistically significant in explaining the risk-taking

behaviors of investors.

Futures mispricing data series (MPt) is constructed by first deducting cost-of-carry theoretical

price from the market price and expressing it as the fraction of spot index level at that date as

formulated in Eq. (1).

F∗t,T = S te(r−d)(T−t) and MPt =
Ft,T − F∗t,T

S t
(1)

That said, the level of mispricing that will presumably urge arbitragers to step in and drag the

prices to no-arbitrage region depends on the cost structures in the market. We formulate boundary

10E-mini futures contracts were first launched for trading in September 1997
11Yields are available at the following website: https://www.federalreserve.gov/datadownload/Choose.

aspx?rel=H15
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violations as in the following equation.

Bviot = max(|MPt| −Ct, 0) (2)

where Ct represents the cost levels associated with arbitrage practices. Costs mainly include the

two-way commissions, slippage costs and bid-ask spreads. Those costs are expressed to be varying

for Exchange members and professional investors. Dwyer et al. (1996) assume the cost levels as

0.25% of index value for NYSE Members and 0.38% for institutional investors. Extrapolated cost

levels range between 0.0%-0.2% of spot index level in Richie et al. (2008); which is similar to Tu

et al. (2016). In our main analysis, we too use 0.2% as the threshold parameter.

2.2. Model and Methodology

2.2.1. Ambiguity Measurement

Empirical counterparts of ambiguity measure are not ample. Cao et al. (2005) use variation in

the mean levels as a proxy for uncertainty. Likewise, Garlappi et al. (2007) set confidence inter-

vals around expected return levels and link portfolio choices to the precision in mean estimation.

Shortly later, analyst forecast dispersion offered by Anderson et al. (2009) has become a popular

ambiguity proxy in the literature. Antoniou et al. (2015) similarly use this dispersion as the surro-

gate measure for ambiguity while studying stock market participation and Lee et al. (2019) prefer

this measure to explore uncertainty and cross-sectional expected stock returns.12 In quantifying

the degree of ambiguity, this study employs a recently introduced methodology that is present both

in Izhakian and Yermack (2017) and Brenner and Izhakian (2018). In this approach, level of am-

biguity is calculated by the volatility of probabilities. In authors’ own words, “. . . ambiguity can

be measured by the volatility of probabilities, just as the degree of risk can be measured by the

volatility of returns. . . ”.

Let the following triple set (Ω, δ, P) define our probability space for which Ω is the return state

space, δ represents the σ-algebra associated with the subsets of Ω and P is a probability on δ

(P ∈ P where P denotes the set of all probability measures). In a nested and similar manner, we

12Other recent studies that rely on divergence of market experts’ forecasts in measuring Knightian uncertainty:
Ulrich (2013) while studying inflation ambiguity and term premium in US government bond yields; Drechsler (2013)
to quantify model uncertainty and to explain representative investor’s portfolio formation decisions.
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can simply define another triple set (P, ♭, ξ), elements of which respectively stand for state space

of probabilities, measurable subsets within this new state space P, and a probability measure on

the new algebra.

In our study, the unknown spot index return is defined to be r : Ω→ R with its density function

φ(r). In line with above notation, cumulative return probability is P (P ∈ P). Expected return and

associated variance can be calculated with expected probabilities as in Eq. (3).

E[r] ≡
∫

E[φ(r)]rdr and Var[r] ≡
∫

E[φ(r)](r − E[r])2dr (3)

Following Brenner and Izhakian (2018), with the second-order (subjective) probability measure ξ

which is grounded on credence, we define expected marginal and cumulative probabilities on this

return respectively via Eq. (4) as

E[φ(r)] ≡
∫
P

φ(r)dξ and E[P(r)] ≡
∫
P

P(r)dξ (4)

The intuition for the variance of the marginal probability is that the returns are not identically dis-

tributed over time (not independently as well) and the expectation of distributions are mainly driven

by the variation in the set of priors as opposed to Bayesian approach where there is only a single

prior. Put differently, probability of a return level falling in a certain interval varies depending on

the priors over time. Variation in these probabilities can be formally represented by the variance

of marginal probability defined in Eq. (5) and associated ambiguity measure is formulated as in

Eq. (6). At a point in time, these priors are the previous return distributions constructed over a

certain period; say a day. For instance, think of an empirical probability distribution derived via

intraday returns with a specified measurement interval. If the each trading day has exactly the same

distribution over a month, the investor will have only one prior and the ambiguity will be zero. As

the distributions become less identical, set of priors (number of different probability distributions)

will increase and that will make the outlook more ambiguous. As in Brenner and Izhakian (2018),

we assume normally distributed daily returns and take the differing moments of the distributions

as reference while calculating the ambiguity. Hence, level of ambiguity can be formulated as in

Eq. (7) for the continuous case.

Var[φ(r)] ≡
∫
P

(φ(r) − E[φ(r)])2dξ (5)
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℧2[r] =
∫

E[φ(r)] Var[φ(r)]dr. (6)

℧2[r] =
∫

E[ϕ(r; µ, σ)] Var[ϕ(r; µ, σ)]dr (7)

where ϕ(.) corresponds to normal probability density function.

To derive the ambiguity numbers from S&P500 index data, we create histograms for each

individual day as suggested in our methodological guide. A typical open-close trading period is

divided into bins with 5-minute intervals and respective returns are calculated. To construct the

normally distributed daily priors (every P for each day), we refer to the mean (µ) and variance (σ2)

parameters from the 5-minute return distributions of each single day. These daily parameters are

the most pivotal components of ambiguity measurement. The cost of shrinking the interval length

further is the market micro-structure noise that contaminates the data and the staleness in spot

index because of the non-synchronicity originating from the lead-lag effect in index constituents.

The phases in quantifying the ambiguity are explained in order. We first construct histograms

at each separate day for return distributions. Second, we determine a daily return range (±6%

in the present study) and divide it into 60 intervals (implying 0.02% return for each interval) as

done in Brenner and Izhakian (2018). As a caveat for applications in markets where the extremes

are experienced more frequently with larger intraday fluctuations (where the tails are thicker),

expanding the base return range (e.g. ±10%) may be methodologically more appropriate to assign

individual bins to higher levels of absolute returns. In the next step, probability of the returns

coinciding with each bin is computed on every single day.

Technically, let bi,r j, j+1 represent the probability on a particular day i and for a certain bin

bounded by the return cutoffs r j and r j+1 where i = 1, 2, . . . , 22 and j = 0, 1, . . . , 59. For each

day i, probability distribution (the daily prior) will have distinctive parameters µi and σ2
i . As

a matter of course, we will have a series of mean and standard deviation ratios ( µ1
σ1
, µ2
σ2
, . . . , µ22

σ22
)

and we hold the assumption of t-distribution for these daily ratios; that is µ

σ
∼ t(κ,ℶ). As

stressed in Brenner and Izhakian (2018), this assumption is central to computing expected prob-

abilities and their pertinent variances. For the bins over the whole period, we calculate sepa-

rate probabilities b1,r j j+1 , b2,r j j+1 , . . . , b22,r j j+1 integrated over daily densities with corresponding

(µ1, σ
2
1), (µ2, σ

2
2), . . . , (µ22, σ

2
22) parameters. We also calculate probabilities for the outer sections of
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return range boundary; bi,r0 for the probability below −6% cutoff and bi,1−r60 for probability above

6% cutoff. Out of these computations, we calculate the mean and variance of probabilities at each

single bin corresponding to the period; notationally (µb j, j+1 , σ
2
b j, j+1

) for the bin with cutoffs r j and

r j+1.

Ambiguity within a certain window length (which is 22 days in the present study) is estimated

through Eq. (8); the discrete version of Eq. (7). Therein, r0 and r60 respectively stand for -6% and

6% return boundaries and w in the scaling factor 1
w(1−w) is simply the bin size.

℧2[r] =
1

w(1 − w)
×
(
E
[
Φ (r0; µ, σ

]
Var
[
Φ (r0; µ, σ

]
+

60∑
i=1

E
[
Φ (ri; µ, σ) − Φ (ri−1; µ, σ)

]
Var
[
Φ (ri; µ, σ)

−Φ (ri−1; µ, σ)
]
+ E
[
1 − Φ (r60; µ, σ)

]
Var
[
1 − Φ (r60; µ, σ)

])
,

(8)

Before the ambiguity expectation, we first calculate the realized ambiguities within a certain

window size by moving one day forward at each calculation. Observe that these are not the realized

daily ambiguities, they are rather the realized ambiguities for each window period and attached to

the last days of each window. This way, we construct a time series of realized ambiguities with

length N − l + 1 where N is the total number of days in our data span and l is the window size.

With this time series of realized ambiguities at hand, we check the auto-correlations. In autoregres-

sive (AR) univariate time series modelling, predictive information comes only from information

embedded in the previous values of the variable. This modelling can be enriched by adding the

lags of error term (ARMA). Motivated by the auto-correlations in realized ambiguity, we expect

next day’s ambiguity via Eq. (9) and Eq. (10). We decide on the lag selection by looking at the

AICC (corrected AIC) values for different combinations of p and q with max lags of 10 for each

(p × q = 100 combinations).

ln℧t = ψ0 + ϵt +

p∑
i=1

ψi · ln℧t−1 +

q∑
i=1

θi · ϵt−1. (9)

(
℧2

t+1

)E
= Et

[
℧2

t+1

]
= exp

(
2̂ln℧t + 2 Var [ut]

)
, (10)
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2.2.2. Model Estimation

As our base case, we use quantile regression (QR) approach to analyze the relationship between

our variables of interest. This non-parametric technique is more appropriate especially when the

explanatory variables are affecting different percentiles of the response variable distinctively. This

is crucial to check the impact of ambiguity (and other independent variables as well) on different

quantiles of the mispricing. Since there is a more complex relationship (rather than linear with

constant variation) between the response and explanatory variables, QR is a better model for our

purposes. In a similar fashion to ordinary least squares approach (OLS) in which we want to

know the conditional mean of the dependent variable, we are interested in conditional quantiles

of the dependent variable where the estimation mechanism rests on mean-absolute-deviation as

opposed to mean-squared-errors. Hence, in the QR approach, parameter estimates are obtained by

minimizing the sum of absolute deviations based on the quantiles denoted as τ.

Notation-wise, Quantileτ(y|x) = Xβτ is the formal description of quantile regression just as

E(y|x) = Xβµ targets the conditional mean of the dependent variable. Cutoff points for the quan-

tiles typically work on the ordered sequence of a variable. In the conditional set-up, these cutoff

points change depending on the level of explanatory variables; one of which is the lagged mar-

ket ambiguity in our analysis. With no distributional assumptions and being more robust to the

presence of outliers, QR provides us with different coefficient estimates for different quantiles

(as opposed to OLS) and help us understand varying association for different levels of response

variable.

For both absolute mispricing and boundary violations, we use the following model set-up in

our analysis.

|MPt| = β0 + β1AmbE
t−1 + β2VIXt−1 + β3DRt + β4VOLt + β5VVOLt + εt (11)

where AmbE
t is the expected ambiguity for the next day (℧2

t+1
E), DRt is the remaining days

to contract expiry, VOLt is spot volatility and VVOLt is the volatility of volatility. We analyze

positive and negative mispricings separately as the degree of ambiguity can have differing affects

on futures mispricing. It is widely documented that investors act more aggressively in bad market

conditions. This asymmetric reaction rests on agents’ psychological inclination to adapt them-
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selves to worst-case scenarios.13 We run our model with 0.10 increments up to 0.80 and with 0.05

increments thereafter: τ = [0.10, 0.20, ..., 0.80, 0.85, 0.90, 0.95]. We model boundary violations

(Bvio) similarly in QR set-up. For positive and negative mispricing, dependent variable naturally

contains too many zeros which make the distribution highly skewed and unsuitable for OLS anal-

ysis. It is a semi − continuous series with true zeros and we cannot handle this feature of the

data via transformation or discretization as they will offer limited cure with considerable loss of

information.14

|Bviot| = β0 + β1AmbE
t−1 + β2VIXt−1 + β3DRt + β4VOLt + β5VVOLt + εt (12)

After placing the rationale of QR approach, it is equally crucial to state that our analysis covers

a very large period which naturally raises the question of parameter instability. To grasp the evolu-

tion of the association between the level of mispricing and the market uncertainty, we also check

the emergence of parameter significance and direction for market ambiguity. To do that, we apply

rolling window QR regressions over the entire period.

3. Empirical Findings

Our empirical analyses divulge striking findings on the asymmetric and time-varying effects of

ambiguity in financial markets. In the first place, we separately run our regressions for the whole

period for all absolute mispricings as well as mispricings which violate no-arbitrage boundaries.

Main findings in Table 1 reveal distinctive mispricing reactions for different ambiguity regimes

prevalent in the market. It tabulates results for all absolute mispricings and we show that there

is a clear positive relationship between the deviations from the theoretical index futures prices

and the surrounding market ambiguity. Results also show that lagged ambiguity is significant

almost for all quantiles and the coefficient generally gets larger as we move towards the highest

quantile. Reported findings in Table 1 also demonstrate that spot volatility, implied volatility, days

13Among others, see for instance Epstein and Schneider (2008) and Gollier (2011) for further discussion on ambi-
guity and investor reactions.

14Data discretization means converting the data to categorical variable by creating partitions and assinging ordered
values to all non-zero observations. Then, required analysis can be completed via (ordered) logistic regression model.
Tobit regression approach is also not compatible since it also assumes normality for the residuals and zeros in our Bvio
variable are not for the concealed observations.
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Figure 1: Positive and Negative Mispricings vs Ambiguity
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to contract maturity and volatility of the spot volatility have explanatory powers in many quantiles

of the mispricing in line with the relevant literature.

Table 2 reports the same results for boundary violations. The reason for the first meaningful

quantiles in Table 1 and Table 2 not being aligned (τ = 0.10 vs τ = 0.70) is the number of zeros in

latter data set; with boundary violations we only focus on mispricing magnitudes which are above

the arbitrage cost level.

On the other hand, it is of more interest to see if the market ambiguity has differing explanatory

implications in different periods of the whole data span. Renowned as parameter instability, this is

especially important when data at hand cover decades in which the varying association is highly

possible. To expose the concealed time-variation in market ambiguity coefficients, we run rolling

window Q-regressions and discover a very crucial trend in the relationship between ambiguity and

absolute mispricing.
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Figure 2: Ambiguity, Spot Index and VIX
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Fig. 2a: Ambiguity vs Spot

S&P 500

19
97

-0
9

20
01

-1
1

20
06

-0
1

20
10

-0
3

20
14

-0
5

20
18

-0
7

20
21

-1
2

10

20

30

40

50

60

70

80

Fig. 2b: Ambiguity vs VIX
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3.1. Varying Ambiguity Effect

Results in Panel A of Table 1 show that absolute mispricing has a positive relationship with market

ambiguity. Repeating the same analysis for positive and negative mispricing even evinces that
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Table 1
QR Results for Index Futures Mispricing

Notes: Table reports QR results derived from the following model: |MPt | = β0 + β1AmbE
t−1 + β2VIXt−1 + β3DRt + β4VOLt + β5VVOLt + εt .

t-statistics are reported in parenthesis. VIX and Days Remaining are scaled by 1/1,000 and 1/1,000,000 respectively. We use the lag of AMBt in all
regressioins as it is the expectation for the next day’s ambiguity.

ABSOLUTE MISPRICING &AMBIGUITY

Quantiles 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9 0.95

Intercept -0.0001 -0.0002 -0.0003 -0.0005 -0.0005 -0.0006 -0.0008 -0.001 -0.0011 -0.0011 -0.0014
(-2.79) (-4.73) (-5.28) (-7.5) (-6.14) (-6.8) (-8.42) (-8.57) (-7.72) (-6.74) (-6.38)

AMBt−1 0.0001 0.0001 0.0001 0.0004 0.0002 0.0003 0.0006 0.0007 0.0007 0.0004 0.001
(0.77) (0.91) (1.25) (3.1) (1.26) (1.96) (3.29) (2.96) (2.49) (1.15) (2.25)

VIXt−1 0.0015 0.0072 0.0110 0.0218 0.0352 0.0448 0.0497 0.0642 0.0743 0.0797 0.0915
(0.8) (3.1) (3.89) (6.7) (9.16) (10.44) (10.51) (11.75) (11.03) (10.73) (9.07)

DRt 2.378 4.930 6.609 8.004 9.215 10.170 11.907 13.344 14.392 16.308 17.639
(9.32) (15.17) (16.84) (17.24) (16.6) (16.09) (16.74) (15.81) (13.55) (13.81) (10.33)

VOLt 0.0095 0.0119 0.0194 0.0216 0.0243 0.0403 0.0662 0.0804 0.0847 0.1044 0.1381
(3.4) (3.36) (4.67) (4.5) (4.34) (6.6) (9.98) (10.46) (8.67) (9.47) (8.75)

VVOLt 0.002 0.0021 0.0063 0.0066 -0.0185 -0.0342 -0.0163 0.0041 0.0416 0.0507 0.0994
(0.27) (0.23) (0.6) (0.53) (-1.26) (-2.08) (-0.91) (0.2) (1.67) (1.83) (2.64)

Pse.R2̂ 0.02 0.03 0.05 0.06 0.08 0.10 0.13 0.17 0.20 0.24 0.30

Table 2
QR Results for Boundary Violating Mispricing

Notes: Table reports QR results derived from the following model: |Bviot | = β0 + β1AmbE
t−1 + β2VIXt−1 + β3DRt + β4VOLt + β5VVOLt + εt .

t-statistics are reported in parenthesis. VIX and Days Remaining are scaled by 1/1,000 and 1/1,000,000 respectively. We use the lag of AMBt in all
regressioins as it is the expectation for the next day’s ambiguity. We use 0.2% of spot index level as our cost threshold. All violations are in absolute
terms.

ALL BOUNDARY VIOLATIONS & AMBIGUITY

Quantiles 0.7 0.8 0.85 0.9 0.95

Intercept -0.0019 -0.0023 -0.0023 -0.0019 -0.0022
(-37.41) (-17.99) (-14.31) (-10.24) (-8.49)

AMBt−1 0.0016 0.0005 0.0002 -0.0007 -0.0001
(16) (1.88) (0.6) (-1.76) (-0.19)

VIXt−1 0.0607 0.1077 0.1093 0.1039 0.1058
(23.5) (16.85) (13.81) (11.42) (8.8)

DRt 2.763 13.458 20.267 24.696 27.284
(7.15) (12.83) (15.31) (16.81) (13.7)

VOLt 0.0842 0.0795 0.0781 0.0885 0.1292
(23.29) (8.64) (6.81) (6.54) (6.89)

VVOLt -0.0042 -0.0054 0.0523 0.0765 0.1641
(-0.42) (-0.22) (1.75) (2.24) (3.63)

Pse.R2 0.07 0.21 0.21 0.23 0.28

the relationship is different for negative and positive mispricing; it turns to negative for absolute

negative mispricings in the index futures. Our extensive analysis on sufficiently large different
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Figure 3: Positive and Negative Mispricing vs Remaining Contract Life
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subperiods further revealed different relationships within positive mispricing as well as negative

mispricing analysis. Results of these analyses indicate the parameter instability in our explanatory

variables of interest. To comprehend the evolution of this varying relationship precisely, we apply

local quantile regressions with a rolling window set-up with 60 months of window length and

3 months of rolling step size. Selected window length enables us to conduct our analysis with

adequate number of data. Step size is actually compatible with the duration of trading in front-

month index futures contracts. As can be seen in Figure 4, there is a clear upward trend for the

ambiguity t-statistics with the sign of ambiguity coefficients gradually turning to positive from

negative over years. We confirm this trend in our unreported findings if we further shorten the

window length down to 24 months or other interim lengths. With shorter window sizes, t-stats

naturally fluctuate more but the upward trend is preserved.

Months on the x-axis of Figure 4 are the last months of QR window. Ambiguity coefficient

is negative at the beginning but there is a sharp increase around 2005. After fluctuating near
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zero roughly between 2005 and 2008, this association turns to positive with the financial crises

in 2008. T-statistics values also have a clear upward trend over the years for all quantiles (see

Figure 4). It is quite obvious that upward movement in t-stat values is re-sparked after August

2008 as the acute times of 2008 financial crisis enter our window of regressions. When the new

periods of financial crises get appended to our window, ambiguity coefficients first become positive

and climax once the regression window contains only the post-crises period. In spite of the sharp

decline thereafter, we can still see the upward movement in statistical significance after roughly

2014 at all quantiles. On the whole, this time-varying anlaysis takes our study to an interesting

plateau and incentivizes us for a deeper investigation for the driving market forces behind the

switching sign of this association between ambiguity and mispricing.

As the ambiguity soars, agents incline towards safer assets and exert selling pressure on the

market leading to abrupt changes in prices as the decisions are shaped according to worst-case sce-

narios. It is widely documented that spot market and index futures do not track each other perfectly

and there is a powerful price discovery for index futures in the leading spot market movements.15

Adjustment of spot index level to new market conditions is comparatively ponderous due to large

number of index constituents and some market imperfections like short-sale restrictions. In con-

trast to staleness in spot index levels, futures prices are more agile and volatile since it is only a

single asset with advantageous cost structure and free of short-sale restrictions. It is thus quite

straightforward that mispricing in index futures is highly dependent on futures market prices in the

first place. Hence, either in tumbling or in bull markets, absolute mispricing levels will be gov-

erned primarily by the movements in futures markets. After all, mispricing means maladaptation

between the spot-led theoretical futures price and the market futures price itself. A positive rela-

tionship between ambiguity and mispricing implies that those two values fall more apart from each

other as the ambiguity climbs whereas a negative relationship implies that these values converge to

each other amid soaring market ambiguity. Our time-varying analysis reveals that ambiguity has a

varying predictive role for index futures mispricing with negative coefficients rapidly converging to

zero boundary after roughly 2005 and becoming positive after broadly the financial crises. Based

on the idea that mispricing is chiefly stirred by the participants of futures markets, it will be nice

to keep futures markets under magnifying glass.

15Refer for instance to Brenner et al. (1989) and Hasbrouck (2003) for discussions on spot market and index futures
pricing dynamics.
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It is evident that investors are using futures markets for hedging purposes against unfavorable

price movements in the underlying asset or indicator. As the activity in futures market increases

as a result of rising concerns about potential losses, market reactions become sharper may it be

induced by rising volatility levels or the uncertainty. In other words, enhanced futures markets

activity with vigilant investors increases the likelihood of theoretical and market futures prices

deviating more from each other. Along with these, we find rising ambiguity levels during upward

market movements as depicted in the upper panel of Figure 2 and this is compatible with the results

of Brenner and Izhakian (2018) as they similarly report positive association between price run-ups

in the market and higher ambiguity levels. Common wisdom associates higher ambiguity with

market downturns. Similar to Brenner and Izhakian (2018) however, we conjecture that sustained

upward trend perturbs investors and intensifies the concern of a looming market downturn as they

suspect the surge in the market is due to noise and it is not backed by the improvements in stock

fundamentals.

To gauge the degree of activity in futures market, we can look at open interests in futures

contracts as an appropriate proxy.

4. Conclusion

This paper tries to improve our understanding about the mispricing in S&P 500 index futures

contracts under market ambiguity. We report that mispricing in E-mini futures contracts have time-

varying association with prevalent market uncertainty in which the the trend in this association

switches sign from negative to positive over the past three decades. With a quantile regression

approach, we are also able to see the degree of this relationship for different levels of mispricing

and market ambiguity.

PS: These are our first findings and we are still working on how market ambiguity permeates the

market. One of the issues we are trying to tackle is the price pressures created by hedgers’ demands

when ambiguity soars; especially the demand of index option market makers and leveraged ETFs

to hedge short gamma exposures.
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Figure 4:
Direction of Ambiguity Effect
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(b): t-stats for Quantile 0.30
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(c): t-stats for Quantile 0.40
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(d): t-stats for Quantile 0.50
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(e): t-stats for Quantile 0.60
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(f): t-stats for Quantile 0.70
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(g): t-stats for Quantile 0.80
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(h): t-stats for Quantile 0.85
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(i): t-stats for Quantile 0.90
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(j): t-stats for Quantile 0.95
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Notes: This graph shows time-varying coefficients and t-statistics from rolling window QR outputs for different quan-
tiles with a Window length of 60 months and rolling step size of 3 months. Data cover the period September 1997 -
December 2021. Months on the x-axis are the last months of the window.
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